A Report on Prime Numbers of the Forms $M = (6a + 1)2^{2m-1} - 1$ and $M' = (6a - 1)2^{2m} - 1$

By H. C. Williams and C. R. Zarnke

1. Introduction. In 1956 Riesel [1] published a table of all primes of the form $M = (6a + 1)2^n - 1$ and $M' = (6a - 1)2^n - 1$ for $a \leq 9$ and $1 \leq n \leq 150$ (in the cases $6a \pm 1 = 5$, 7, or 11 the range is $1 \leq n \leq 250$). The purpose of this paper is to extend that table for values of $a \leq 25$ and $1 \leq n \leq 1000$.

2. Method. These numbers were tested for primality by using a theorem due to Lehmer [2]. We state this theorem in a slightly more general form here. Let $N = A2^n - 1 \neq 3N'$, where n > 2, (A, 6) = 1, and $A < 2^n$; also let $R = 3 \cdot 2^{k+1}y^2$, where k = 0 or 1 and y is a solution of the Diophantine equation

$$3 \cdot 2^k y^2 - 2 = t^2$$

Then a necessary and sufficient condition for N to be prime is that N divides the (n-1)th term of the series

$$S_1, S_2, S_3, \cdots S_i, \cdots$$
 where $S_i = S_{i-1}^2 - 2, S_1 = V_{2A}(R, 1)$.

Here

$$V_{2A}(R, 1) = r_1^{2A} + r_2^{2A}$$
,

where r_1 and r_2 are the roots of

$$x^2 - \sqrt{R} x + 1 = 0.$$

A programme which first eliminated, by a preliminary sieving process, values of M and M' with small prime divisors and then applied the above theorem, as a test for primality, on the remaining numbers was written for an IBM 7040 computer. The calculations performed by this routine were verified by running the programme twice; on the first run, the parameter R was set equal to 6; on the second run, R was set equal to 12. The results of each of these two runs were identical and are presented in Table 1. (The primality of the values of M and M', where $6a + 1 > 2^n$, was determined from tables.)

3. Remarks. It is interesting to note that if we define a sequence of numbers $\{G_n\}$, where

$$G_n = F_n 2^{F_n - 1} - 1$$
, and $F_n = 2^{2^n} + 1$,

we see that G_0 , G_1 , G_2 are each prime. It was also verified by the authors that G_3 is a prime; G_3 is a prime of exactly 80 digits; cf. Sierpiński [3]. This suggests that perhaps G_4 might be a prime; however, with our present facilities, the great length of time required to determine the primality of a number the size of G_4 is prohibitive.

Received February 3, 1967.

TABLE 1. List of Primes of the Form $(6a \pm 1)2^n - 1$

$6a \pm 1$	$n~(\leq 1000)$
5	2,4,8,10,12,14,18,32,48,54,72,148,184,248,270,274,420
7	1,5,9,17,21,29,45,177
11	2,26,50,54,126,134,246,354,362,950
13	3,7,23,287,291,795
17	2,4,6,16,20,36,54,60,96,124,150,252,356,460,612,654,664,698,702,972
19	1,3,5,21,41,49,89,133,141,165,189,293,305,395,651,665,771,801,923,953
23	4,0,12,40,72,244,204,044,888
$\frac{20}{20}$	5,9,11,17,20,50,59,70,100,107,100,210,550,050,001,007
29 31	1 5 7 11 13 23 33 35 37 47 115 205 235 271 409 739 837 887
35	2,6,10,20,44,114,146,156,174,260,306,380,654,686,702,814,906
37	1
41	2,10,14,18,50,114,122,294,362,554,582,638,758
43	7,31,67,251,767
47	4,14,70,78
49	1,5,7,9,13,15,29,33,39,55,81,95,205,279,581,807,813
53	2,6,8,42,50,62,362,488,642,846
55	1,3,5,7,15,33,41,57,69,75,77,131,133,153,247,305,351,409,471
59 61	12,10,72,100,200,910 2 5 0 12 17 10 25 20 62 67 75 110 147 225 410 715 205
65	4 6 12 22 28 52 78 04 124 162 174 102 204 304 376 808 030 072
67	5.9.21.45.65.77.273.677
71	2.14.410
73	7,11,19,71,79,131
77	2,4,14,26,58,60,64,100,122,212,566,638
79	1, 3, 7, 15, 43, 57, 61, 75, 145, 217, 247
83	2,4,8,10,14,18,22,24,26,28,36,42,58,64,78,158,198,206,424,550,676,904
85	5,11,71,113,115,355,473,563,883
89	4,8,12,24,48,52,64,84,96
91	1,3,9,13,10,17,19,23,47,37,07,73,731,81,83,191,301,321,433,007,009,917
95 07	$1 \ 9 \ 45 \ 177 \ 585$
101	10.18.54.70
103	3.7.11.19.63.75.95.127.155.163.171.283.563
107	10,12,18,24,28,40,90,132,214,238,322,532,858,940
109	9,149,177,419,617
113	8,14,74,80,274,334,590,608,614,650
115	1,3,11,13,19,21,31,49,59,69,73,115,129,397,623,769
119	12,16,52,160,192,216,376,436
121	
$120 \\ 197$	2,4,44,102,490,904
131	2 14 34 38 42 78 90 178 778 974
133	3.11.15.19.31.59.75.103.163.235.375.615.767
137	2,18,38,62
139	1,5,7,9,15,19,21,35,37,39,41,49,69,111,115,141,159,181,201,217,487,567,
1.10	677,765,811,841,917
143	[2,4,6,8,12,18,26,32,34,36,42,60,78,82,84,88,154,174,208,256,366,448,478,746]
145	740 5 13 15 31 77 151 181 945 445 447 883
140	4.16.48.60.240.256.304
$151 \\ 151$	5,221,641

Mention should also be made of a table given by Robinson [4] of primes of the form $A2^n + 1$. This paper also contains an excellent bibliography on the present topic and related ones.

University of Waterloo Waterloo, Canada

1. H. RIESEL, "A note on prime numbers of the forms $N = (6a + 1)2^{2n-1} - 1$ and $M = (6a - 1)2^{2n} - 1$," Ark. Mat., v. 3, 1956, p. 253. MR 17, 945. 2. D. H. LEHMER, "An extended theory of Lucas' functions," Ann. of Math. (2), v. 31, 1930,

2. D. R. DERMER, An extended and a standard of the problems in the Theory of Numbers, translated from Polish, 3. W. SIERPIŃSKI, A Selection of Problems in the Theory of Numbers, translated from Polish, Macmillan, New York, 1964, p. 28. MR 30 #1078.
4. R. M. ROBINSON, "A report on primes of the form k2ⁿ + 1 and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 674-675. MR 20 #3097.